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Abstract. Corrado Gini developed in 1914 a methodology to measure
the difference between two probability distributions, the Gini Index.
In this paper, we propose the Bimodal Gini Index. We based this
model on the definition of the Gini Coefficient, a model of independence
between two distributions, so we set a model that approximates the
Gini Index with the supposition that the searched distribution is a
linear combination of independent distributions, without adding a lot
of computational cost. We show some applications in political sciences
concerning voting problems to illustrate the performance of the Bimodal
Gini Index.
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1 Introduction

The Gini Index is a measure of the level of inequality between two probability
distributions. It is applied in several fields of study like engineering, ecology,
transport and economics, see [8].

The Gini Index problem is a particular case of Monge’s mass transfer
problem, as we will see in the following section. This problem always has a
solution that is a distance between the involved probability distributions, but it
can be very expensive to find it, computationally speaking, see [9] and [12].
To handle these expensive calculations, the Gini Coefficient was introduced
as a natural upper bound of the Gini Index. The Gini Coefficient has several
applications, many of them in economics and sociology, [2] and [8]. However, it
differs a lot from the value of the Gini Index.

In this work we present the Bimodal Gini Index, a model that is a better
approximation to the Gini Index than the Gini Coefficient with a low com-
putational cost, by taking the Gini Index problem and doing the supposition
that the searched probability is a linear combination of independent probability
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distributions. With this model, we reduced the number of variables and the
restrictions of the Gini Index problem and can be solved by using numerical
optimization.

Also, it has several interesting properties, among these we highlight that
it can be split in two linear programming problems, both easily solved by the
simplex method.

2 Gini Index and Gini Coefficient

Let X be a discrete random variable with n elements and two probability
distributions p and q on X. The Gini Index problem (GI) can be stated as:

Minimize:

n∑
i=1

n∑
j=1

dijπij , (1)

subject to: πij ≥ 0, for all i, j (2)
n∑

j=1

πij = pi, i = 1, 2, ..., n (3)

n∑
i=1

πij = qj , j = 1, 2, ..., n (4)

n∑
i=1

n∑
j=1

πij = 1, (5)

where pi = p(xi) y qi = q(xi) for i = 1, ..., n, the cost function is a distance
function dij = d(xi, xj) on X×X, for all i and j, and πij = π(xi, xj) denotes the
variables. The solution is a probability distribution π∗ = {π∗

ij : i = 1, ..., n, j =
1, ..., n}. We define the Gini Index for the distributions p and q, denoted by
GI(p, q), as the optimal value of the GI problem. Note that there are n2 no
negative variables, then the solution of the problem can be expensive to find
for large n, even with the use of computational tools. For more information
about the Gini index and its problem in both forms, continuos and discrete, see
[7,12,13].

On the other hand, we have a “measure of uncertainty” of a random variable,
the Gini Coefficient for a discrete random variable X with n elements and two
probability distributions p and q on X, see [1]:

GC(p, q) =

n∑
i=1

n∑
j=1

dijpiqj .

With these definitions we can establish the following inequality

GI(p, q) ≤ GC(p, q).

The Gini Index and the Gini Coefficient are used as indicators of social and
economic inequality, as we can see in the articles [3,10,11].
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3 Proposed Model: Bimodal Gini Index

To set the Bimodal Gini Index we consider the Gini Index problem and we add
the additional assumption that the searched probability distribution π is a linear
combination of independent distributions, that means, it has the form:

πij = αf
(1)
i f

(2)
j + (1− α)g

(1)
i g

(2)
j , (6)

where α ∈ (0, 1) and f (1), f (2), g(1) and g(2) are independient probability distri-
butions pairwise on X, this is that f (1) and f (2) are independent and g(1) and
g(2) are independent.

As f (1), f (2), g(1) and g(2) are probability distributions, by replacing (6) in
the expressions (3) and (4) we obtain:

pi = αf
(1)
i + (1− α)g

(1)
i , for all i and qj = αf

(2)
j + (1− α)g

(2)
j , for all j,

and expressing the variables g
(1)
i and g

(2)
j in terms of f

(1)
i and f

(2)
j , respec-

tively, as:

g
(1)
i =

pi − αf (1)i

1− α
and g

(2)
j =

qj − αf (2)j

1− α
, for all i, j and α ∈ (0, 1),

we can express the variables πij only in terms of f
(1)
i and f

(2)
j as:

πij =
α

1− α

(
f
(1)
i f

(2)
j − pif (2)j − qjf (1)i +

1

α
piqj

)
. (7)

Also, we can express the values of f
(k)
n , with k = 1, 2, by f

(k)
n = 1−

∑n−1
i=1 f

(k)
i ,

when we use this expressions in (7) we can define the following functions:

h1(f
(1)
i , f

(2)
j ) = f

(1)
i f

(2)
j − pif

(2)
j − qjf

(1)
i +

1

α
piqj , for i = 1, ..., n− 1, j = 1, ..., n− 1,

h2(f (1), f
(2)
j ) = f

(2)
j

(
1 −

n−1∑
i=1

f
(1)
i − pn

)
+qj

(
n−1∑
i=1

f
(1)
i − 1 +

1

α
pn

)
, for j = 1, ..., n−1,

h3(f
(1)
i , f (2)) = f

(1)
i

(
1 −

n−1∑
j=i

f
(2)
j − qn

)
+pi

(
n−1∑
j=1

f
(2)
j − 1 +

1

α
qn

)
, for i = 1, ..., n−1,

where f (1) = (f
(1)
1 , ..., f

(1)
n−1) and f (2) = (f

(2)
1 , ..., f

(2)
n−1), then we define

H(f (1), f (2)) =
α

1 − α

n−1∑
i=1

n−1∑
j=1

dijh1(f
(1)
i , f

(2)
j )+

n−1∑
j=1

dijh2(f (1), f
(2)
j )+

n−1∑
i=1

dijh3(f
(1)
i , f (2)).

This function only depends on the first n− 1 variables of the distributions f (1)

and f (2). Also we have:

pi − (1− α)

α
≤ f (1)i ≤ pi

α
,
qj − (1− α)

α
≤ f (2)j ≤ qj

α
, for all i, j and α ∈ (0, 1).
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Thus, we define the Bimodal Gini Index (BGI) as:

Minimize: H(f (1), f (2)),

subject to: max

{
0,
pi − (1− α)

α

}
≤ f (1)i ≤ min

{
1,
pi
α

}
, i = 1, ..., n− 1,

max

{
0,
qj − (1− α)

α

}
≤ f (2)j ≤ min

{
1,
qj
α

}
, j = 1, ..., n− 1,

max

{
0,
pn − (1− α)

α

}
≤ 1−

n−1∑
i=1

f
(1)
i ≤ min

{
1,
pn
α

}
,

max

{
0,
qn − (1− α)

α

}
≤ 1−

n−1∑
j=1

f
(2)
j ≤ min

{
1,
qn
α

}
.

If f∗ = (f (1)∗, f (2)∗) is the optimal solution of the previous problem, then we
define the Bimodal Gini Index as:

BGI(p, q) = H(f (1)∗, f (2)∗).

Note that the Gini Index problem has n2 no negative variables and 2n + 1
equality restrictions. With the proposed model we can reduce this amount to
2(n− 1) variables, 2(n− 1) box restrictions and 2 linear box restrictions.

Moreover, the Bimodal Gini Index is a better bound for the Gini Index than
the Gini Coefficient, that is, the following inequality is fulfilled:

GI(p, q) ≤ BGI(p, q) ≤ GC(p, q).

So, we add the additional assumption that the searched probability distribution
π is a linear combination of independent distributions, as in 6, based on the idea
of independence given by the Gini Coefficient, to make it more complex without
adding a lot of computational cost:

– If α takes the value 0 or 1 in (6), then the optimal value of the BGI problem
and the value of the Gini Coefficient will be the same.

– The objective function H of the BGI problem is a convex and symmetric
function of α and reaches its minimum value in 1/2 (or in α close to 1/2).

– We can separate the BGI problem in two linear programming problems, both
solved by the simplex method, as we will see in the following section.

3.1 Approximation to the Bimodal Gini Index

We can express the function H(f (1), f (2)) as:

H(f (1), f (2)) = HL(f (1)) +HL(f (2)) +HC(f (1), f (2)) + C,
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where:

HL(f (1)) =
α

1 − α

[
n−1∑
i=1

n∑
j=1

dij(−qjf (1)
i ) +

n−1∑
i=1

n−1∑
j=1

dnjqjf
(1)
i +

n−1∑
i=1

dinf
(1)
i

]
,

HL(f (2)) =
α

1 − α

[
n∑

i=1

n−1∑
j=1

dij(−pif (2)
j ) +

n−1∑
i=1

n−1∑
j=1

dinpif
(2)
j +

n−1∑
j=1

dnjf
(2)
j

]
,

HC(f (1), f (2)) =
α

1 − α

[
n−1∑
i=1

n−1∑
j=1

dijf
(1)
i f

(2)
j −

n−1∑
i=1

n−1∑
j=1

dnjf
(1)
i f

(2)
j −

n−1∑
i=1

n−1∑
j=1

dinf
(1)
i f

(2)
j

]
,

C =
1

1 − α

[
n∑

i=1

n∑
j=1

dijpiqj

]
+

α

1 − α

[
n−1∑
j=1

dnjqj +

n−1∑
i=1

dinpi

]
.

The linear functions HL(f (1)) and HL(f (2)) depends on f (1) and f (2),
respectively. The value of C is known. The quadratic function HC(f (1), f (2))
only have negative values bounded by −2d, where d is the maximum distance
between the elements of X. We can move the elements of X to a specific range,
so d is as small as we desired. Then, we only consider the linear functions,
leaving the following separate problems.

Linear problem with respect to f (1):

Minimize: HL(f (1))

subject to: max

{
0,
pi − (1 − α)

α

}
≤ f

(1)
i ≤ min

{
1,
pi
α

}
, i = 1, ..., n− 1,

max

{
0,
pn − (1 − α)

α

}
≤ 1 −

n−1∑
i=1

f
(1)
i ≤ min

{
1,
pn
α

}
.

Linear problem with respect to f (2)

Minimize: HL(f (2))

subject to: max

{
0,
qj − (1 − α)

α

}
≤ f

(2)
j ≤ min

{
1,
qj
α

}
, j = 1, ..., n− 1

max

{
0,
qn − (1 − α)

α

}
≤ 1 −

n−1∑
j=1

f
(2)
j ≤ min

{
1,
qn
α

}
.

Then we define the Separated Bimodal Gini Index as:

BGIs(p, q) = H(f (1)∗, f (2)∗),

where f (1)∗ = (f
(1)∗
1 , ..., f

(1)∗
n−1) y f

(2)∗
1 = (f

(2)∗
1 , ..., f

(2)∗
n−1) are the points where the

optimal results are reached in the linear problems with respect to distributions
f (1) y f (2), respectively, and H is the objective function previously expressed.

We can obtain the Separated Bimodal Gini Index solving two linear problems
by the simplex method, each of one with n− 1 variables, n− 1 box restrictions
and a linear box restriction. Solving these two problems is much less expensive,
computationally speaking, than solving the original one.
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– The Bimodal Gini Index and the Separated Bimodal Gini Index take the
same value in α = 1/2 in computational experiments.

– If we obtain the values of the distributions f (1) and f (2) we can obtain the
values of the distribution π of the form (6). The distribution π is of great
importance for the application in the following section.

4 Aplication in Political Science

4.1 Voting Data Ohio, 1990

We can see in the Table (1) the data of race of voting-age person and the voting
decision for the 1990 election in the Ohio State House, District 42, see [4]. The
unobservable values in the empty cells must be found from the observed values
in the marginals.

Table 1. Aggregate data for the 1990 election in the Ohio State House, District 42.

Race Voting decision
Democrat Republican No vote

African american 221 (0.313)
White 484 (0.687)

130 (0.184) 92 (0.131) 483 (0.685) 705 (1.000)

We want to fill this table using the problems raised in the previous section
by taking the value of α = 1/2, the random variable X ={African american,
White, Democrat, Republican, No vote} and the probability distributions p =
{0.313, 0.687, 0, 0, 0} and q = {0, 0, 0.184, 0.131, 0.685}. Since the values of the
random variable X are categorical, we will use the discrete metric. So, the
problems are:

Minimize: 0.315f
(1)
1 + 0.315f

(1)
2

subject to: 0 ≤ f
(1)
1 ≤ 0.626,

0.374 ≤ f
(1)
2 ≤ 1,

f
(1)
1 + f

(1)
2 = 1.

Minimize: f
(2)
3 + f

(2)
4

subject to: 0 ≤ f
(2)
3 ≤ 0.368,

0 ≤ f
(2)
4 ≤ 0.262,

0 ≤ f
(2)
3 + f

(2)
4 ≤ 0.63.

We found the searching value BGIs in points of the form

(f
(1)∗
1 , f

(1)∗
2 , f

(1)∗
3 , f

(1)∗
4 , f

(2)∗
1 , f

(2)∗
2 , f

(2)∗
3 , f

(2)∗
4 ) = (f

(1)
1 , 1− f (1)1 , 0, 0, 0, 0, 0, 0),

with f
(1)
1 ∈ [0, 0.626]. We analize the solution in the extreme point with f

(1)
1 = 0.

So the Table 2 shows the data of interest, the probability distribution π.
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Table 2. Results given by the Separated Binomial Gini Index for the 1990 election in
the Ohio State House, District 42.

Democrat Republican No vote
African american 0.115184 0.082006 0.11581

White 0.068816 0.048994 0.56919

Note that with the problems of the Separate Gini Index we can obtain the
wanted probabilities and a scenario of how the votes in Ohio could have been
distributed with respect to the race of the voters.

In [5] three types of results obtained for this same problem given by King
are shown, with the particularity that this solutions are interest intervals.
Thus, when making a comparison of the puntual results obtained by the IGAs
problems, we can notice that these are within the corresponding intervals.

4.2 Elections in the republic of Weimar, 1932

One of the most studied questions in the history is “who voted by Hitler?”. In
[6] identify some factors that could explain why certain groups of voters joined
the Nazi party, concluding that a determining factor was the economic great
depression, so the occupations of voters are studied. In the Table (3) we observe
the marginals obtained for this problem, the left column of the table denotes
each occupational group while the upper row indicates the different political
parties.

Table 3. Aggregate data for elections in 1932 in the republic of Weimar.

Far Left Left/Center Far Right Nazi Liberal No vote/ Other
Self-employed 0.164

Blue collar 0.314
White collar 0.144

Domestic 0.197
Unemployed 0.181

0.120 0.311 0.049 0.311 0.018 0.191

The objetive of this problem is filling the Table to answer questions like “what
fraction of independent people voted for the Nazi party?”. Analyzing historically
this type of questions, it is expected that the results related to the working class
(blue collar) will be those that favor the Nazi party, since they feared losing their
jobs if the centralist party remained in power, see [6]. There are no statistical
references for the solution to this problem, our results would be a way to confirm
the hypothesis made by researchers in Social Sciences.

We solved the Separated Bimodal Gini Index problems with α = 1/2 and the
random variable X ={Self-employed, Blue collar, White collar, Domestic, Unem-
ployed, Far Left, Left/Center, Far Right, Nazi, Liberal, No vote/Other} and the
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probability distributions p = {0.164, 0.314, 0.144, 0.197, 0.181, 0, 0, 0, 0, 0, 0} and
q = {0, 0, 0, 0, 0, 0.120, 0.311, 0.049, 0.311, 0.018, 0.191}. So, we have the following
problems:

Minimize: 0.809f
(1)
1 + 0.809f

(1)
2 + 0.809f

(1)
3 + 0.809f

(1)
4 + 0.809f

(1)
5

subject to: 0 ≤ f (1)1 ≤ 0.328, 0 ≤ f (1)2 ≤ 0.628,

0 ≤ f (1)3 ≤ 0.288, 0 ≤ f (1)4 ≤ 0.394,

0 ≤ f (1)5 ≤ 0.362, f
(1)
1 + f

(1)
2 + f

(1)
3 + f

(1)
4 + f

(1)
5 = 1.

Minimize: f
(2)
6 + f

(2)
7 + f

(2)
8 + f

(2)
9 + f

(2)
10

subject to: 0 ≤ f (2)6 ≤ 0.240, 0 ≤ f (2)7 ≤ 0.622,

0 ≤ f (2)8 ≤ 0.098, 0 ≤ f (2)9 ≤ 0.622,

0 ≤ f (2)10 ≤ 0.036, 0.618 ≤ f (2)6 + f
(2)
7 + f

(2)
8 + f

(2)
9 + f

(2)
10 ≤ 1.

The minimum value is reached in the points of the form

(f
(1)
1 , f

(1)
2 , f

(1)
3 , f

(1)
4 , f

(1)
5 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, f

(2)
6 , f

(2)
7 , f

(2)
8 , f

(2)
9 , f

(2)
10 )

where the values of this variables meet the constraints of the previous problems.
We calculated the values in the Table 4 for the point

(0.198, 0.12, 0.258, 0.254, 0.17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18, 0.074, 0.098, 0.23, 0.036).

This point meets the aforementioned restrictions.

Table 4. Results given by the Separated Binomial Gini Index for the 1932 elections in
the republic of Weimar.

Far Left Left/Center Far Right Nazi Liberal No vote/ Other
Self-employed 0.022 0.043 0.009 0.048 0.004 0.038

Blue collar 0.026 0.144 0.006 0.113 0.002 0.023
White collar 0.024 0.018 0.013 0.035 0.005 0.049

Domestic 0.027 0.047 0.013 0.057 0.004 0.049
Unemployed 0.021 0.059 0.008 0.058 0.003 0.032

As we can see, it is true that the working class, blue collar, is the most likely
to belong to the Nazi party or the centralist party, as expected.

5 Conclusions and Future Work

The Bimodal Gini Index is a better bound for the Gini Index than the Gini
Coefficient. The Bimodal Gini Index has many favorable properties like the Sep-
arated Bimodal Gini Index problems. This is possible because of the specific form
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given to the searched distribution, that reduces the feasible set of the problem.
Also, because this model is based in the Gini Coefficient, the computational cost
does not increase as much. In this way we reduced the problem in terms of the
number of variables and we found a simpler way to solve it by means of two
linear problems with box constraints using the simplex method.

We can also observe in the given examples that the problems of the separated
Bimodal Gini Index are very useful to solve problems where we have grouped
information and we want to obtain data at a disaggregated level. The solved
examples are current problems pertinent to political science and history, and
their solutions are of great importance for these fields of science.

As future work, we want to use this model in other data bases in different
areas of science and in any type of problems that involved disaggregated data
or lack of information.
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